

NPS-CS-05-008

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

 Prepared for: NAVAIR
 12350 Research Parkway, Orlando, FL

FINAL REPORT ----- ACOUSTIC SIMULATION API

REQUIREMENTS MODEL

by

Valdis Berzins

September 2005

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM Patrick W. Dunne Richard S. Elster
Superintendent Provost

This report was prepared for and funded by NAVAIR.

Reproduction of all or part of this report is authorized.

Prepared by: Reviewed by:

_________________________ _________________________
Valdis Berzins Peter Denning
Professor Chair
Computer Science Computer Science

Released by:

Leonard A. Ferrari
Associate Provost and
Dean of Research

 1

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
7/27/2005

3. REPORT TYPE AND DATES COVERED
 Final Report

 FY05
4. TITLE AND SUBTITLE: Title (Mix case letters)
 Acoustic Simulation API Requirements Model
 Final Report FY 05

6. AUTHOR(S) V. Berzins

5. FUNDING NUMBERS
 N6133905WX00302

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER
 NPS-CS-05-008

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 NAVAIR
 12350 Research Parkway, Orlando, FL

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement (mix case letters)

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This report describes a model-independent API for ocean acoustic simulation. It is intended primarily to support training
applications and to decouple them from the detail of particular acoustic models

15. NUMBER OF
PAGES 41

14. SUBJECT TERMS
Acoustic Simulation

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

 2

Table of Contents

1 INTRODUCTION...4

1.1 PURPOSE ..4
1.2 CONTEXT ...4
1.3 CONCEPT OF OPERATION...5
1.4 ORGANIZATION OF THE API ..6
1.5 SUMMARY OF ESSENTIAL SERVICES...7
1.6 PRACTICAL ISSUES AND API RATIONALE...7

1.6.1 Optimizations ...7
1.6.2 Initialization of Input Attributes...8
1.6.3 Performance Tuning Controls..8

2 OUTPUT SERVICES AND ATTRIBUTES...9
2.1 IMPLICITLY DEFINED ATTRIBUTE ACCESS FUNCTIONS ..9
2.2 GET_SENSOR_OUTPUT ..11
2.3 REVERBERATION..11

2.3.1 Discrete_Reverberation ...11
2.3.1.1 Type Discrete_Return..12

 2.3.1.2 Type Frequencye_distribution ..12
2.3.2 Continuous Reverberation ..13

2.3.2.1 Type Reverberatione_Envelope...13
 2.3.2.2 Reverberatione_Envelope_sample ..14

2.4 PROPAGATION_LOSS_VS_RANGE ...15
2.4.1 Type Propagation_Loss_Field..16

2.5 POINT_TO_POINT_PROPAGATION_LOSS..17
2.5.1 Type path ..17
2.5.2 Type Location ...19
2.5.3 Type vector 3 ..19
2.5.4 Type complex ..20
2.5.5 Type band ...21
2.5.6 Type random_delay ..21

3 INTITIALIZATION / INPUT SERVICES AND ATTRIBUTES ..23
3.1 IMPLICITLY DEFINED ATTRIBUTE ACCESS FUNCTIONS ...23
3.2 EVA INITIALIZATION ...23

3.2.1 Type EVA_initialization_parameters ..23
3.2.2 Type EVA_gaming_parameters ...24
 3.2.2.1 Type EVA_date...24
3.2.3 Type EVA_rainshower ...24
3.2.4 Type EVA_biological_reverberator ...25
3.2.5 Type Vector2 ..25
3.2.6 Type EVA_sensor ..25
3.2.7 Type EVA_sensor_type ..25
3.2.8 Type Orientation ..26
3.2.9 Type EVA_Beam ..26
 3.2.9.1 Type EVA_Beam_Pattern..26
3.2.10 Type Xmit_receive_mode ...26

3.3 FEY RAY INITIALIZATION...26
3.4 CASS /GRAB INITIALIZATION ..27

4 PERFORMANCE TUNING ATTRIBUTES..27
4.1 EVA PERFORMANCE TUNING ...27

 3

4.2 FEY RAY PERFORMANCE TUNING...27
4.3CASS /GRAB PERFORMANCE TUNING ...27

5 OPEN ISSUES REGARDING THE API..28
 APPENDIX1-SUMMARY OF KNOWN INFORMATION ABOUT THE CASS/GRAB
INTERFACE
..29
APPENDIX 2 - ANALYSIS OF EVA MODEL SIGNAL FLUCTUATIONS DUE TO BOUNDARY
INTERACTIONS ...33

 4

1 INTRODUCTION
1.1 Purpose

The purpose of the Acoustic Simulation API is to provide a standard interface to a variety
of ocean acoustic models meeting the needs of application developers. The initially
envisioned application domain is simulation support for training of sonar operators.
Other likely applications include future mission planning, simulating artificial
environments to support test and evaluation of new fleet systems, comparative scientific
studies of different acoustic models and other unanticipated uses.

The interface was designed to support the most popular models, including the Enhanced
EVA model, KingKong/FeyRay model, and the CASS/GRAB model. A long range goal
is to accommodate other models as well with a minimum of incompatible modifications.
The object-oriented design of the API was chosen to enable compatible extensions for
this purpose by simply adding more classes and operations, ideally without changes to the
interface classes already defined.

1.2 Context

Acoustic models are used for computer simulation of the propagation of sound through
the ocean. This problem is not amenable to closed form mathematical solutions because
the speed of sound in the ocean, and hence also the index of refraction for sound waves,
is not uniform. The main factors influencing the speed of sound are the depth, salinity,
and water temperature.

The direction of sound propagation can be affected by non-uniformities in the index of
refraction as well as reflection off the surface and the bottom. Sound can be confined to a
shallow, isothermal layer, called a surface duct, by surface reflections and refractions due
to the upward refracting nature of the sound speed profile in the duct. A deeper local
minimum in index of refraction can also act as a waveguide. Reflections can cause loss of
signal strength, particularly reflections from the bottom or a rough surface. Sound in the
ocean can follow more than one path between two points due to differences in launch
angles and numbers of reflections. Different paths can have different signal strengths,
different time delays, and different phase offsets that can cause interference effects.

Ray tracing models are commonly used in acoustic simulation because they are
computationally efficient. All three of the legacy models considered in this study (Fey
Ray, EVA, and CASS/GRAB) employ ray tracing. Some alternative classes of
computational models for acoustic modeling include 1) normal mode models 2) parabolic
equation models, and 3) wave number integration models. These types of models can
provide more accuracy at the expense of more computation time. The API proposed here
was designed without regard for these alternative types of acoustic models.

Several Oceanographic Environmental Acoustic Propagation Loss models have been
developed to model acoustic propagation and reverberation in real-world ocean
environments, including the three models we consider in this study. However, due to
independent development, these models have variations in how they interface to
applications and provide output data. Therefore, different high-level application codes are

 5

currently needed to invoke different models. This increases development costs of training
systems, makes it difficult to compare the results of different models, and makes it
difficult to port existing applications to new models. At the current time there are no
accepted standards for interfaces to oceanographic acoustic models. The API proposed in
this document is a first step toward development of such a standard.

1.3 Concept of Operation

Our goal is to develop an Application Program Interface that is common to the above-
mentioned models and future models. This API provides a set of common services related
to acoustic measurements to support training and simulation applications. The existing
models are legacy systems that cannot be modified. Hence an additional layer of software
wrappers (with relatively low execution overhead) that realize proposed API services in
terms of legacy services is recommended. The purpose of the wrappers is to repackage
legacy services to match a common standard API, not to implement new services. This
restriction has limited the expressive power and convenience to developers of the current
version of the API.

The diagram shown in Fig.1 summarizes our vision of the interaction between a typical
training application, the proposed API, and a selected legacy acoustic model.

Figure 1- API Context Diagram

Implicit in the proposed concept of operation are the following divisions of
responsibilities:

1. The API and the underlying acoustic model are responsible for:

A. simulating passive sensor outputs

B. simulating active sensor outputs

2. The applications using the API are responsible for:

Training Simulator API Model

Instructor

Student

 6

 A. any signal processing needed for determining higher level properties of sensor
outputs, such as spectral analysis.

 B. deriving and presenting various plots and displays to users, such as instructors and
students, based on simulated sensor outputs.

 C. interacting with users as necessary to determine necessary attributes of the
simulation scenario, such as the gaming area, locations of active sources, reflectors,
sensors and other relevant attributes.

 D. interacting with users as necessary for authentication and obtaining any id’s and
passwords needed to access the acoustic models.

1.4 Organization of the API

The main API is structured as an abstract class with one concrete subclass for each legacy
model, as shown in Fig. 2. The abstract class defines the set of services that are(or should
be) common to all of the legacy models. The model-specific subclasses augment these
with additional services and data models specific to each legacy model. The implications
of this structure are:

1. The applications programmer must create an instance of the API class before using
any of the services it provides.

2. Since the part of the API common to all models API is an abstract class, it cannot be
instantiated directly. The applications programmer must instantiate one of the
concrete subclasses instead, thereby choosing a specific legacy model to be used.

3. This structure can support concurrent use of instances of several different legacy
models. Note however, that the current version of the design does not support
concurrent use of more than one instance of the same legacy model.

Acoustic_simulation
_API

EVA_Acoustic_
Simulation_API

Fey_Ray_Acoustic
_Simulation_API

CASS_GRAB_
Acoustic_Simulation_API

API’s for
other models

 Fig. 2 API Class Structure

 7

The API also contains a number of auxiliary classes that model input and output data
used by the services provided by the main API. This enables the same interface to
connect to several different models that use different data structures to represent the same
information.

1.5 Summary of Essential Services

An essential model represents an ideal system in the absence of technology and
performance constraints. The essential services of the acoustic simulation API are listed
in Fig. 3.

Get_Sensor_Output

 Discrete_Reverberation

 Continuous_Reverberation

 Propagation_loss_vs_range

Point_To_Point_Propagation_Loss

 Fig. 3 List of essential API Services

1.6 Practical Issues and API Rationale

The practical API contains many more services than the ideal set listed in Fig. 3 because:

1. Input parameters of services have been transformed into persistent attributes that can
be set and examined by a set of auxiliary input and output services.

2. Support services to handle issues such as system initialization have been added.

3. A set of optional controls for tuning performance and quality of service have been
added.

These issues are discussed further in the rest of this section.

1.6.1 Optimizations
The use of persistent attributes to represent input parameters describing the simulation
scenario is an optimization that reduces the number of times that (possibly voluminous)
information needs to be transmitted (possibly over a network) and that expensive
computation (such as reverberation) must be repeated. Small perturbations in positions of
sources and targets can be accommodated by extrapolation based on derivatives (e.g in
EVA), rather than by full recomputation if previous values of inputs and outputs are
stored.

 8

These optimizations are useful because many aspects of the simulation scenario, such as
water properties and ocean bottom properties, change very slowly or remain constant
over the course of a simulation session. In normal usage, the input attributes will be set
by the application before the main services are required.

1.6.2 Initialization of Input Attributes
To ensure that the state of the API is fully observable to the application, all input
attributes are subject to the following uniform requirement:

R1: All input attributes can be both set and retrieved via the API.
This frees the application from the need to keep track of the current values of the input
attributes, and gives testers full observability into the state of the API. This motivates the
convention explained in section 2.1: every attribute_setting operation has a matching
attribute_value retrieval operation.

Persistent attributes require initialization, and could produce runtime errors if the main
services are invoked before the input attributes on which they depend have been set. To
prevent such errors, the API has been defined as a set of object classes whose instances
provide all acoustic simulation services. To get access to the services provided by the
API, the application must create an instance of the appropriate class by invoking a
constructor operation. The constructor operations are responsible for the following issues:

1. Initialization of the underlying acoustic model to make it ready for operations.
This can include actions such as setting up network connections, loading data
from associated databases, obtaining passwords needed for access, allocating
processors, memory, and other computing resources, and so on.

2. Initialization of all the input attributes on which other API services depend. The
initial values must be either specified meaningful defaults or given by the
applications as input parameters to the constructor operation.

Proper implementation of the API constructor operations will therefore prevent potential
errors due to access to initially attribute.

The constructor operations also control the choice of which underlying acoustic model is
used, and enable future applications to run instances of several different models
concurrently, either for purposes of comparison or to provide different qualities of service
(e.g., fast, rough results vs. slow, but more accurate ones).

1.6.3 Performance Tuning Controls
There are optional performance tuning services unique to each model. All of these are
subject to the following uniform requirement:

R2: The model must function correctly and perform reasonably well even if the
performance tuning services are never called.

This requirement implies that most users of the API will be able to ignore the existence of
the performance tuning services. In an ideal situation, the effect of each performance
tuning parameter should be clear to an application domain expert who is not familiar with
the details of internal operation of the underlying model. This issue is an open problem at
this point because many of the performance tuning operations provided by the legacy

 9

models are not explained from the point of view of a user (rather than that of a
developer), and many of these operations are poorly documented. It is therefore likely
that the typical user of the API will not be able to understand what the performance
tuning operations do. In the current version of the API, application developers who need
to tune performance have to do their own in-depth investigations of the effect of the
performance tuning parameters on the specific model they are using.

In the current version of the API, all performance tuning control services are model-
specific, and are located in the model-specific concrete subclass of the main API.
Eventually it could be useful to create a standard, model-independent performance tuning
interface. This will, however, require substantial further analysis and possible re-
engineering of parts of the legacy models. This was not done in the current API because
projected costs exceeded available resources.

2 OUTPUT SERVICES AND ATTRIBUTES

General policies:

• Every Set_x service has a corresponding Get_x service, for any persistent
attribute x. These attribute output services are not explicitly listed here to avoid
clutter.

• Every service can throw the exception “not_supported” if the current
implementation of the specific model used does not support the service. This
policy enables the API to provide some useful services even if some of the legacy
models do not support them at the current time.

2.1 Implicitly Defined Attribute Access Functions

This section outlines the uniform conventions for packaging services related to persistent
input attributes that apply to the proposed API.

 If a class C has a settable attribute A of type T, it will have an operation for setting
 the attribute with the following interface.

 Set_A (x: C, value: T)

 The effect of this operation is to set attribute A of object x to the given value.
 Each such operation has a companion readout operation with the following interface:

 Get_A (x: C): T

The effect of the operation get_A is to return the current value of attribute A of object x.

Every set_A operation has a matching get_A operation, for each attribute A of
each class C in the API. These operations are not explicitly specified to avoid cluttering
document.

 10

There are also some computed attributes that are not settable. These are defined explicitly
in the document.

 Game_Clock Gaming_Area

 Fig. 4 List of Settable Attributes for the Acoustic simulation API

There are also a number of attributes needed to support the simulation that are not
explicitly input by the user, but rather are drawn from databases internal to the legacy
models. There are used internally by the models and are not exported by the current
version of the API. For example, EVA has internally databases that supply the following
kinds of information :

1. ocean depth
2. surface temperature
3. bottom loss characteristics
4. magnetic variation and inclination
5. current speed and direction at a requested depth
6. water temperature at a requested depth
7. sound velocity at a requested depth
8. salinity at a requested depth

 11

2.2 Get_Sensor_Output

Service: get_sensor_output
 EVA - not provided
 Fey Rey - not provided
 CASS/GRAB - not in DRAB, CASS has services, detail not determined

 Input: Receiver: sensor
 Receiver_location: location,

 Receiver_orientation: orientation
 Game clock: integer
 //seconds since game start acoustic pressure level

 Output: amplitude: float

This operation was judged to be the most useful to the developer of training simulations.
However, it is not directly supported by any of the legacy models, which provide lower
level services. The operation was not modeled in more detail because of lack of detail and
lack of support in the legacy models. This service cannot be implemented at the current
time. It is identified here as an indicator of direction for future development.

2.3 Reverberation

Reverberation refers to the acoustic signals produced in response to an active acoustic
transmission, also known as a ping.

Reverberation consists of two parts: discrete returns and continuous background
reverberation signals. These two are separated in the API because the update rates for the
two kinds of information are typically different. Continuous background reverberation is
more time consuming to compute but is relatively insensitive to small displacements of
the transmitter and receiver. This implies the continuous background reverberation can be
updated infrequently if at all.

Discrete returns are more sensitive to the location of source and receiver, and hence must
usually be updated once per ping.

2.3.1 Discrete_Reverberation

 Discrete returns represent both direct reception of the original signal via various paths
and identifiable discrete echoes of that signal from various localized reverberation.

Service: Discrete_ Reverberation

 EVA: Get Discrete Reverb

 Fey Ray: not provided

 CASS/GRAB: Not provided by GRAB. CASS has multiple reverberation models.
Details could not be determined for these.

Input: source: sensor,

 12

 source_location: location,

 source_orientation: orientation,

 receiver: sensor,

 receiver_location,

 receiver_orientation: orientation

Outputs: discrete_returns: sequence[discrete_return]

 // sorted in increasing order of arrival time

Exceptions: source_cannot_transmit,

 Receiver_cannot_receive

2.3.1.1 Type discrete_return

 Type discrete_return

 Create_discrete_return (time_since_ping: float, //seconds

 departure_angle: orientation,

 arrival_angle: orientation,

 category: return_category,

 amplitude: frequency_distribution);

 Get_time_since_last_ping(discrete_return): float //seconds

 Get_departure_angle (discrete_return): orientation

 Get_arrival_angle(discrete_return): orientation

 Get_category(discrete_return): return_category

 Get_amplitude(discrete_return): frequency_ distribution

 END discrete_return

2.3.1.2 Type frequency_distribution

 Type frequency_distribution IS
 Create_frequency_distribution(frequency: float //in Hertz
 amplitude: float) //-1.0 .. +1.0
 :frequency_distribution
 //Amplitude is ratio to the signal at 1 meter from the source
 // Creates a distribution containing an amplitude at a single frequency
 Add_signal(frequency_distribution,
 frequency: float, // Hertz
 amplitude: float) //-1.0 .. +1.0
 Get_amplitude(frequency_distribution, frequency): float //-1.0 .. +1.0

 13

 // interpolates between sample frequencies throws exception
 // frequency_out_of_range if frequency is below minimum sampled
 // frequency or above maximum sampled frequency
 Get_min_frequency(frequency_distribution): float // in Hertz
 Get_max_frequency(frequency_distribution): float // in Hertz
 Get_frequencies(frequency_distribution): sequence[float] //in Hertz
 // the set of frequencies at which discrete amplitude samples are available

 END frequency_distribution

2.3.2 Continuous Reverberation
Continuous background reverberation represents returns from distributed scatterers that
blend together into a continuous background return pattern.

 Service: Continuous_Reverberation

 EVA: Get Reverb Envelopes

 Fey Ray: not provided

 CASS/GRAB: not in GRAB

 CASS provides multiple reverberation models. Details could not be
determined.

 Inputs: source: sensor,

 source_location: location,

 source_orientation: orientation,

 receiver: sensor,

 receiver_location,

 receiver_orientation: orientation

Outputs: reverberation: reverberation_envelope

 Exception: source_cannot_transmit,

 Receiver_cannot_receive

2.3.2.1 Type Reverberation_envelope

 Type reverberation_envelope IS
 Create_reverberation_envelope
 (initial_time: float, //seconds
 // delay from transmission to first received signal
 time_offset: float, // seconds
 // sampling time relative to the initial time
 sample: reverberation_envelope_sample)

 14

 Add_sample(reverberation_envelope,
 time_offset: float, //seconds
 sample: reverberation_envelope_sample)
 // add another data sample with the specified time delay relative to
 // initial time
 Get_initial_time(reverberation_envelope): float // seconds
 Get_number_of_sample(reverberation_envelope): integer
 // returns the number of sample points
 Get_sample_time(reverberation_envelope, position: integer)
 : reverberation_envelope_sample
 //position in 1.. number of sample

 END reverberation_envelope

2.3.2.2 Type Reverberation_envelope_sample

 Type Reverberation_envelope_sample IS
 Create_ reverberation_envelope_sample
 (source_beam, receiver_beam: EVA_beam_pattern,
 arrival_direction, departure_direction: float //in degrees
 simple: frequency_distribution): reverberation_envelope_sample
 //creates a reverberation envelope sample containing a single frequency
 // distribution, corresponding to a single source beam, receiver beam, and
 // arrival direction
 Add_distribution(reverberation_envelope_sample,
 source beam, receiver beam: EVA_beam_pattern,
 arrival_direction, departure_direction: float,
 signal: frequency_distribution)
 // add another frequency distribution corresponding to the given beam
 // pattern and angles
 Get_number_of_frequency_distributions(reverberation_envelope_sample): integer
 // returns the number of frequency distribution
 // in the reverberation envelope sample
 Get_source_beam(reverberation_envelope_sample, position: integer)
 : EVA_beam_pattern
 // throws exception position_out_of_bounds
 // if the position is not in 1.. number_of_frequency _distributions
 Get_receiver_beam(reverberation_envelope_sample, position: integer)
 : EVA_beam_pattern
 // throws exception position_out_of_bounds
 // if the position is not in 1.. number_of_frequency _distributions
 Get_arrival_direction(reverberation_envelope_sample, position: integer): float
 //degree
 // throws exception position_out_of_bounds
 // if the position is not in 1.. number_of_frequency _distribution

 15

 Get_departure_direction(reverberation_envelope_sample, position: integer) : float
 //degree

 // The direction in which the signal must have departed from the transmitter to
 // arrive at the receiver with the given arrival angle
 // throws exception position_out_of_bounds

 // if the position is not in 1.. number_of_frequency _distributions
 Get_signal(reverberation_envelope_sample, position: integer)
 : frequency_distribution

 // throws exception position_out_of_bounds
 // if the position is not in 1.. number_of_ frequency _distributions
 END reverberation_envelope_sample

2.4 Propagation_Loss_VS_Range

Service: propagation_loss_VS_Range
 // The propagation loss as a function of the range from the source, for a given
 // direction from the source and given source and receiver beam pattern
EVA – PropagationLossVsRange
FeyRay – not provided
CASS/GRAB – details not determined

Inputs: Source: location,
 Frequencies: band,

receiverBearing: angle, // in degrees
 receiverDepth: float, // in meters
 MaxRange: float // in meters
 Steps: integer // determines resolution of the output

// delta range = MaxRange / (Steps - 1)
Source_beam, receiver_beam: EVA_beam_pattern

Depends on the following input attributes:
 Get_Game_Clock: time, // represents time and date
 Get_gaming_area // define the part of the ocean to be simulated

Output: PropagationLossField

Exceptions: endpoint_outside_gaming_area(location),

endpoint_on_land(location),
endpoint_below_bottom(location),
path_crosses_land,
input_data_out_of_range,
insufficient_memory,
 // The API should handle buffer overflows if memory is available
computation_failure(string) // message states reason for failure
 // The only generic failure exception supported by current FeyRay

 16

2.4.1 Type Propagation_Loss_Field
TYPE PropagationLossField IS

 Create_propagation_loss_field(
 source: location,
 frequencies: band,
 receiver_bearing: float, // degrees
 receiver_depth: float, // meters
 max_range: float, // meters
 range: float, // meters
 amplitude: requency_distribution): propagation_loss_field
 // creates a propagation loss field with a single range sample
 Add_range_step(propagation_loss_field,
 range: float, //meters
 amplitude: frequency_distribution)
 // add a new range step and the corresponding frequency distribution of
 // amplitude to a given propagation loss field
 Get_source_location(propagation_loss_field,
 source_beam, receiver_beam: EVA_beam_pattern): location,
 Get_frequencies(propagation_loss_field,

 source_beam, receiver_beam: EVA_beam_pattern): band,
GetReceiverBearing: float, // in degrees

 GetReceiverDepth: float, // in meters
 GetMaxRange, source_beam, receiver_beam: EVA_beam_pattern: float
 // in meters
 GetSteps, source_beam, receiver_beam: EVA_beam_pattern: integer
 // determines resolution of the output

// delta range = MaxRange / (Steps - 1)
 Get_proploss(PropagationLossField, frequency, range): float
 // Magnitude of net propagation loss
 // interpolated between sample points for frequency and range
 Exception past_maximum_range, frequency_outside_band
 // This service does interpolation only, not extrapolation.
 // Exception frequency—outside_band is thrown if the proploss is
 // requested at a frequency that is not strictly within the range of
 // frequencies at which proploss sample points have been calculated.
 Get_proploss_samples(PropagationLossField, frequency): sequence[float]
 // The set of calculated data points, without any interpolation
 // length of sequence = Steps
 // Magnitude of net propagation loss,

// sampled at equally spaced ranges in [0 .. MaxRange]
// The sampled frequencies for the frequency input parameters can be
// obtained via get_frequencies.

END PropagationLossField

 17

2.5 Point_to_Point_Propagation_Loss

Service: point_to_point_propagation_loss
// Propagation loss from a single source to a single receiver. This service calculates a set
// of eigen paths connecting the source and receiver and an aggregate propagation loss
// value that combines the contributions from all of the paths. The attributes calculated
// for each path, include propagation loss values, phases, travel times. Etc. See the
// description of TYPE path below for details.

EVA – PropagationChannelData
FeyRay – output in KINGKONG data structure, service name unknown, inputs unknown
CASS/GRAB – COMPUTE GRAB EIGENRAYS

Inputs: Source: location,
 Receiver: location,
 Frequencies: band

Depends on the following input attributes:
 Get_Game_Clock // represents time and date
 Get_Gaming_Area // defines the part of the ocean to be simulated
 Affected by the following EVA control attributes:
 Set_MaxPaths: integer,
 // EVA-specific optional upper bound on output size
 // Default should be larger than expected worst case
 // approximately 250 ?

Set_MaxFinePaths: integer
 // EVA-specific optional upper bound on fine structure size

 // Default zero if not specified, means do not compute fine paths

Outputs: ps: set[path]

Combined_proploss: float // in decibels
 // The noncoherent sum of the propagation losses over
 // all the paths, at the frequency with the smallest loss.
Exceptions: endpoint_outside_gaming_area(location),

endpoint_on_land(location),
endpoint_below_bottom(location),
path_crosses_land,
input_data_out_of_range,
insufficient_memory,
 // API should handle buffer overflows if memory is available
computation_failure(string) // message states reason for failure
// The only generic failure exception supported by current FeyRay

2.5.1 Type path
TYPE path IS
 Get_id(path): integer, // unique id for each path

 18

 Get_source_location(path): location,
 Get_receiver_location(path): location,

Get_frequencies(path): band,
 Get_departure_direction(path): vector 3; // unit vector: length=1.0
 // vertical angle at the source is most significant
 Get_arrival_direction(path): vector 3; // unit vector: length=1.0
 // vertical angle at the receiver is most significant
 Get_time_delay(path): time // in seconds
 // The propagation time from the source to the receiver along the current
 // path. Can be used for calculating phases of signals for coherent
 // combinations (Specifically needed to get accurate phase information in
 // EVA, see comment on Get_proploss).
 Get_delay_gradient_at_source(path): vector 3 // in seconds per meter
 // The gradient of the time delay with respect to the position of the
 // source—a three dimensional vector 3 of derivatives. Currently EVA
 // calculates only derivatives in the radial and vertical directions.
 // For transverse displacements much smaller than the range, the derivative
 // in the transverse direction is approximately equal to the derivative in
 // the radial direction, times x/r, where x is the transverse
 // displacement and r is the distance from source to receiver. See Fig.5
 // This approximation can be used to compute the third component of the
 // derivative that EVA does not supply.
 // Gradients are not supported by current version FeyRay, but comments
 // identify them as a possible future FeyRay capability
 Get_delay_gradient_at_receiver(path): vector 3 // in seconds per meter
 // The gradient of the time delay with respect to the position of the
 // receiver—a three dimensional vector 3 of derivatives. Currently EVA
 // calculates only derivatives in the radial and vertical directions. For
 // transverse displacements much smaller than the range, the derivative in
 // the transverse direction is approximately equal to the derivative in the
 // radial direction, times x/r, where x is the transverse
 // displacement and r is the distance from source to receiver. See Fig. 5
 // This approximation can be used to compute the third component of the
 // derivative that EVA does not supply.
 // Gradients are not supported by current version FeyRay, but comments
 // identify them as a possible future FeyRay capability
 Get_proploss(path, frequency): complex
 Exception frequency_outside_band
 // interpolated between sample points for frequency
 // phase depends on path length and number of reflections and has to be
 // calculated from the time delay in EVA to give accurate results
 Get_frequency_spreading(path, sampling_rate: float): random_delay
 // Sampling rate is in Hertz, see random_delay.Get_delay_sample .
 // Models path length variation due to waves, see EVA user’s guide
 // appendix A and appendix 2 of this report
 // Smith: this is a rough approximation, should depend on frequency

 19

 Get_fine_paths(path, sampling_rate: float): set[random_delay]
 // Sampling rate is in Hertz, see random_delay.Get_delay_sample .

// Fine paths represent variations in the propagation delay due to boundary
// interactions resulting in multiple paths, with slight different travel times.
// Examples of such interactions include reflections from different layers
// of sediment, non-specular reflections from a rough bottom or a rough
// surface, and multiple paths in a surface duct. The fine path
// approximation appears to be specific to EVA, see user’s guide EVA
// appendix B and appendix 2 of this report.

END path

 If the speed of sound is constant:

(A) in the radial direction
r=ct, t=r/c, dt /dr= 1/C

(B) in the transverse direction
 21 (/)r x r+

 t = (r/c) SQRT (1+(x/r)2)
 dt / dx =(r/c)(2x/ r2) / 2SQRT (1+(x/r)2)
 = (x/rc) / SQRT (1+(x/r)2)
 ≈ (x/rc) =(x/r)(dt/dr) if x<<r
 This approximation should hold for small transverse displacements even if speed
of sound varies and paths are slightly curved.

 Fig. 5 Approximate Transverse Derivative of Travel Time

2.5.2 Type Location

TYPE location IS
 Create_location(lat, long, depth: float): location // degrees, degrees, meters
 Get_ longitude(location): float, // degrees
 Get_ latitude(location): float, // degrees
 Get_depth(location): float, // meters
 Distance(l1, l2: location): float // meters

 // straight line distance between the
 // two locations

END location

2.5.3 Type vector 3
TYPE vector 3 IS // 3-D vectors
 Cartesian_vector 3(x, y, z: float): vector 3,
 // Generic constructor using Cartesian coordinates

x

r

 20

 // can be used with any kind of units
// (e.g. see Get_delay_gradient_at_source)

 Displacement_vector 3(start, end: location): vector 3
 // The vector 3 from start to end, in units of meters
 Length(vector 3): float // The magnitude of the vector
 Normalize(vector 3): vector 3 // unit vector parallel to the original
 Plus(vector 3, vector 3): vector 3 // vector sum
 Minus(vector 3, vector 3): vector 3 // vector difference
 Times(float, vector 3): vector 3 // scalar multiplication
 Dot(vector 3, vector 3): vector 3 // dot product
 Cross(vector 3, vector 3): vector 3 // cross product
 // also methods for getting components of a vector with respect to
 // various coordinate systems, details TBD

END vector 3

2.5.4 Type complex

TYPE complex IS // complex numbers
// Introduced to represent magnitude and phase of propagation loss
// constructors:

 Cartesian_complex(r, i: float): complex,
 // Generic constructor using the real and imaginary part
 // can be used with any kind of units
 // matches FeyRay
 Polar_complex(magnitude, phase: float): complex
 // The magnitude is the absolute value of a dimensionless ratio,
 // The angle is in degrees
 // matches EVA
 // Attributes and operations:
 Real_part(complex): float
 // The real component of a complex number

Imaginary_part(complex): float
 // The imaginary component of a complex number

Magnitude(complex): float // The radius, wrt polar coordinates
 // if c = a + b*i then Magnitude(c) = sqrt(a*a + b*b) , a and b are real

 Phase(complex): float // The angle, wrt polar coordinates
 // if c = a + b*i then tan(phase(c)) = b/a, a and b are real
 Plus(complex, complex): complex // complex sum

// Complex sums are used for coherent combinations of signals from
// different paths that account for phase differences
// if Re(c)= Real_part(c) and Im(c) = Imaginary_part(c)
// then Re(x + y) = Re(x) + Re(y), Im(x + y) = Im(x) + Im(y)

 // The following are standard operations on complex numbers –
 // not clear if they are all needed for the acoustic API,
 // they are included to support future applications

 21

 Minus(complex, complex): complex // complex difference

// if Re(c)= Real_part(c) and Im(c) = Imaginary_part(c)
// then Re(x - y) = Re(x) - Re(y), Im(x - y) = Im(x) - Im(y)

Times(float, complex): complex // complex multiplication
// if Re(c)= Real_part(c) and Im(c) = Imaginary_part(c)
// then Re(x * y) = Re(x) * Re(y) – Im(x) * Im(y)
// Im(x * y) = Re(x) * Im(y) + Im(x) * Re(y)

Divide(complex, complex): complex // complex division
 Exception division_by_zero

// if Re(c)= Real_part(c) and Im(c) = Imaginary_part(c)
// then Re(x / y) = (Re(x)*Re(y) + Im(x)*Im(y))/(Re(y)^2 + Im(y)^2)
// Im(x / y) = (Im(x)*Re(y) - Re(x)*Im(y))/(Re(y)^2 + Im(y)^2)

 Conjugate(complex): complex // same magnitude, negative phase
// if Re(c)= Real_part(c) and Im(c) = Imaginary_part(c)
// then Re(Conjugate (c)) = Re(c), Im(Conjugate (c)) = - Im(Conjugate (c))

END complex

2.5.5 Type band

TYPE band IS
Create_EVA_band(min_ frequency, max_frequency: float,

 ratio: enumeration[octaves, thirds]): band
// model specific constructor

 // EVA allows only geometrically spaced samples
// with ratio = 2.0 (ratio = octaves) or 2.0^(1/3) (ratio = thirds)

 Create_FeyRay_band(min_ frequency: float): band
 // FeyRay allows only linearly spaced samples that are multiples

// of the minimum frequency.
// max_frequency = number_of_samples * min_frequency
// The number of samples in FeyRay is a constant fixed at compile time,
// currently 512, may have to be a power of 2 to support FFT.

 Get_min_frequency(band): float // Hertz
 Get_max_frequency(band): float // Hertz
 Get_sample_frequencies(band): sequence[float]
 // The sample frequencies in the band
END band

2.5.6 Type random_delay
TYPE random_delay IS

EVA_frequency_spreading_delay(RMSDelayVariation: float,
 DelayVariationFrequency: float,

DelayVariationBandwidth: float,
ZeroToPeakRatio: float,
Sampling_rate: float) : random_delay // constructor matching EVA

 // stochastic model of Bretschneider spectrum for random path length

 22

// fluctuations from surface reflections due to large scale waves.
 // Sampling_rate is the frequency in Hertz at which Get_delay_sample
 // will be invoked. EVA supports rates in the range [5.0 .. 12.0].

EVA_fine_path_delay(Amplitude: float;
FineDelay: float;
Absorption: float;
PatchWidth: float;
PatchLength: float;
PatchOffset: float;
Sampling_rate: float): random_delay // constructor
// matching EVA fine paths, see EVA appendix B.

 Get_delay_sample(random_delay): float // in seconds
 // The random delay samples are added to a constant proploss delay

// to get a realistic proploss time series at the specified sampling rate.
// Samples from random delays constructed using
// EVA_frequency_spreading_delay or EVA_fine_path_delay
// must be called periodically at the specified sampling rate,
// where the rates are relative to the game clock.

END random_delay

 23

3 INTITIALIZATION / INPUT SERVICES AND ATTRIBUTES
3.1 Implicitly defined attribute Access Functions

 Every settable attribute has an implicitly defined readout operation — see section 2.1 for
detail.

3.2 EVA Initialization

 TYPE EVA_acoustic _API IS
 Create_EVA_acoustic_API(EVA_initialization_parameters,
 EVA_gaming_parameters,
 EVA_environment_parameters)

 // Initialize the server using a randomly generated password that is stored
 // internally in the API object, and initialize the models, gaming area,
 // and simulated environment

 Set_game_clock(EVA_acoustic_API, integer) //in seconds from the starting date,
 default 0
 Set Clutter Density(EVA_acoustic_API, float)
 // average number of returns per square meter of ocean area

 // represents density of random clutter returns in addition to seamounts
 Set Clutter Persistence (EVA_acoustic_API, float) //in seconds
 // average persistence time of each random clutter return
 Set Global Wind Speed (EVA_acoustic_API, float, integer)
 // speed in meters per second, transition time in seconds
 Set Global Rain Rate (EVA_acoustic_API, float, integer)
 // Rain rate in mm per hour, transition time in seconds
 Set_local_rain_shower (EVA_acoustic_API,set[EVA_rain_shower], integer)
 //set of storm descriptions, transition time in seconds
 // period over which previous storms will fade out and
 // the new ones will fade in.

Set_local_biological_reverberation(EVA_acoustic_API,
 set[EVA_biological_reverberator],integer)
 // set of biological reverberation areas, transition time in seconds
Set_sensor(EVA_acoustic_API, EVA_sensor, orientation, location, game_clock:
 integer)
 // corresponds to both deployActiveAssets and updateActiveAssets in
 //EVA. The is-deployed attribute of a sensor keeps track of which EVA
 // operation is needed.

 END EVA_acoustic_API

3.2.1 Type EVA_initialization_parameters
 TYPE EVA_initialization_parameters

 Create_EVA_initialization_paramters()

 // optional performance tuning parameter follow

 24

 Set_PL_processor_share (EVA_initialization_parameter, float) //0,1,0.33
 Set_Noise_processor_share(EVA_initialization_parameter, float) //0,1,0.33
 Set_Reverb_processor_share (EVA_initialization_parameter, float) //0,1,0.33
 Set_min_frequency(EVA_initialization_parameter, integer) // in Hertz
 Set_max_ frequency(EVA_initialization_parameter, integer) // in Hertz
 Set_min_active_frequency(EVA_initialization_parameter, integer) // in Hertz
 Set_max_active_frequency(EVA_initialization_parameter, integer) // in Hertz
 Set_min_sensor_depth(EVA_initialization_parameter, integer) //in meters
 Set_max_sensor_depth(EVA_initialization_parameter, integer) //in meters
 Set_sensor_types(EVA_initialization_parameter, set[sensor_type])
 // supply reasonable default values for all optional attribute.

 END EVA_initialization_parameters

3.2.2 Type EVA_gaming_parameters

TYPE EVA_gaming_area IS
 Create_EVA_gaming_area(
 lat,long: float, //center point of area, in degrees
 Height, width: float, //NS and EW size of gaming area, in meters
 Start: date)
 Set_max_ships (user’s guide, integer)
 Set_max_ seamounts (EVA_gaming_area, integer)
 Set_game_length(EVA_gaming_area, integer) //in seconds
 Enable_EVA_position_TL(EVA_gaming_area ,Boolean)
 // enables and disables approximation that speeds up reverberation at
 // the expense of accuracy, default is disabled.
 // The implementation must set safe and reasonable default values for all
 // optional parameters.
 END EVA_gaming_area

 3.2.2.1 Type EVA_date
 TYPE EVA_date IS
 Create_date(month, day, hour, min, sec: integer): date
 //use GMT for time of day
 Get_month(EVA_date): integer //1..12
 Get_day (EVA_date): integer //1..31
 Get_time_of_day(EVA_date): integer //seconds since midnight
 // This operation supports the connection to EVA.
 END EVA_date

3.2.3 Type EVA_rainshower
 TYPE EVA_rain_shower IS
 Create_EVA_rainshower(offset: vector2, size: float, windspeed: float,
 rain_rate: float)
 //offset is the displacement from the center of the gaming area
 Get_offset (EVA_rainshower): vector 2

 25

 Get_size(EVA_ rainshower): float //in meters
 Get_wind_speed(EVA_rainshower): float
 Get_rain_rate(EVA_rain_shower): float // m m per hour
 END EVA_rain_shower

3.2.4 Type EVA_biological_reverberator

 TYPE EVA_biological_reverberator IS
 Create _biological_reverberator(offset:vector 2,size: float,
 Scatteringstrength: float);
 // size in meters, scattering in dB per square meter
 Get_offset(EVA_biological_reverberator): vector 2
 Get_size(EVA_biological_reverberator): float //meters
 Get_scattering_strength(EVA_biological_reverberator): float //mm per hour
 END EVA_biological_reverberator

3.2.5 Type Vector2
 // Two dimensional vectors used to describe positions in the gaming area

 TYPE vector 2 IS
 Create_displacement_vector2(x,y: float) :vector
 //x is month offset in meters; y is east offset in meters
 Get_x(vector 2): float //meters
 Get_y (vector 2): float //meters
 ENS vector 2

3.2.6 Type EVA_sensor

 TYPE EVA_sensor IS //represents a receiver or transmitter
 Create_EVA_sensor(EVA_sensor_type): sensor
 Get_sensor_id(EVA_sensor): integer // a unique id
 Get_sensor_type(EVA_sensor): sensor-type
 Set _is_deployed (sensor, boolean)

 //True if the sensor has already been deployed in the simulation.
 //Supports EVA bookkeeping
 END EVA_sensor

3.2.7 Type EVA_sensor_type

 TYPE sensor_type IS
 Create_sensor_type(set(frequency), set(beam)): sensor_type
 Get_sensor_type_id(sensor_type): integer // unique id
 Get_frequencies(sensor_type): set(frequency)
 Get_beams(sensor_type): set(beam)
 Get_min_frequency(sensor_type): float
 Get_max_frequency(sensor_type): float
 END sensor_type

 26

 3.2.8 Type Orientation
 TYPE Orientation IS
 Create_orientation (tilt_angle, tilt_direction:float) : orientation
 Get_tile_angle (orientation): float
 Get_tile_direction (orientation): float
 END Orientation

 3.2.9 Type EVA_Beam
 TYPE EVA_Beam IS
 Create_Beam(mode: xmit_receive_mode, frequency: float, beam_pattern): beam
 // create a beam with a single frequency
 //throws exception useless_beam if xmit and receive are both false
 Add_beam_pattern(EVA_beam, frequency, beam_pattern)
 // add the specified beam pattern and frequency to the beam, frequency in Hertz.
 Get _mode(EVA_beam): xmit_receive_mode
 Get_frequency(EVA_beam): frequency[float]
 Get_beam_pattern(EVA_beam, frequency): beam_pattern
 //throws exception ,no such frequency is the frequency isnot a member of
 //get_frequencies
 END EVA_Beam

 3.2.9.1 Type EVA_Beam_Pattern
 TYPE EVA_ Beam_Pattern
 Create_Beam_pattern(able: float, level: flaot)
 //angle in degrees, level in dB
 //create a pattern with only one direction
 Add_direction(beam_pattern, angle: float, level: float)
 //add the specified direction and level to the beam pattern
 Get_beam_pattern_id(beam_pattern): integer // a unique id
 Get_angles(beam_pattern): sequence(float)
 //returns the sequence of angles with explicitly stored level
 Get_level(beam_pattern, angle: float): float
 // returns the level at the given angle, in dB, interpolating if necessary
 //throws exception angle_out_of_range if the angle is outside the range of
 // explicitly stored angles
 END Beam_Pattern

 3.2.10 Type Xmit_receive_mode
 TYPE Xmit_receive_mode IS
 Enumeration [receive, transmit, both]
 END Xmit_receive_mode

3.3 Fey Ray Initialization

 27

 TYPE Fey_Ray_Acoustic_API IS
 Create_Fey_Ray_Acoustic_API(…)
 //details of possible parameters unknown
 END Fey_Ray_Acoustic_API IS

3.4 CASS /GRAB Initialization

 TYPE CASS_GRAB_Acoustic_API IS
 Create _CASS_GRAB_Acoustic_API(…)
 // details of possible parameters unknown

END CASS_GRAB_Acoustic_API

4 PERFORMANCE TUNING ATTRIBUTES

 4.1 EVA performance Tuning

 The performance tuning parameters for EVA are the following:
 Set_EVAPModels
 Set_EVANModels
 Set_EVARModels
 Set_MinFreq
 Set_MaxFreq
 Set_MinActiveFreq
 Set_MaxActiveFreq

 Set_MinSensorDepth
 Set_MaxSensorDepth
 Set_MaxRam
 Set_MaxDisk
 Set_MaxPaths
 Set_MaxFinePaths
These correspond directly to parameters in the underlying model.

4.2 Fey Ray Performance Tuning

 The performance tuning attributes for Fey Ray are the following:

 Set_Ray_Trace_Bounds
 Set_allow_Retrograde_Ray_Trace
 Set_TL_Max
 Set_Max_Sur_Refs
 Set_Max_Bot_Refs
 Set_Step_Size_Lims
 Set_Ray_Trace_Tols
These correspond directly to parameters in the underlying model.

4.3 CASS /GRAB Performance Tuning

 28

Details unknown

5 OPEN ISSUES REGARDING THE API

At the current time there are no accepted standards for modeling active sonar.
As best we could determine, Fey Ray does not provide any services, but there does not
appear to be any way to simulate an echo return from a platform that is not transmitting.
The only, kinds of scatters that can be modeled via the EVA interface are seamounts,
random surface clutter, and random biological reverberation. CASS/GRAB has a
variety of reverberation models, which the current study did not evaluate in detail due
to lack of time.

Since the purpose of the API is to simulate sensor outputs to train sonar operations, and
real sensors provide a stream of acoustic pressure measurements, we would expect the
most natural service to be calculation of a pressure time series for a given sensor.
Neither Fey Ray nor EVA directly support such a service, although one could be
synthesized from the reverberation services provided by EVA.

 CASS/GRAB have facilities for computing acoustic pressure—see COMPUTE
PRESSURE (CMP_PRS). However, we were unable to extract details of the interface
to this services from available documents.

 29

Appendix 1 - Summary of known information about the CASS/GRAB interface

1. Introduction

CASS is a very complicated system that provides access to a large number of software
models related to ocean acoustics. Only one of those, GRAB, is considered to be a Navy
standard. This appendix therefore focuses on information relevant to defining an API for
GRAB. Precise information about the interfaces has been impossible to obtain. The
relevant information we did obtain is summarized below.

2. Quotes describing the GRAB interface

The following is extracted from [1]:

The nominal inputs to the GRAB model include a description of the environment, source
and receiver geometry, acoustic frequencies and a user-specified fan of test rays. GRAB
is dimensioned to efficiently accommodate multiple frequency calculations. The GRAB
environment consists of independent, two-dimensional range-dependent surface, bottom
and ocean grids. The bottom grid accommodates the bathymetry and the surface grid
allows for deterministic surface topology. Range-dependent sound speed, temperature,
salinity, surface conditions and bottom composition populate the ocean environment grid.

Primary outputs of the GRAB model include three binary files and an ASCII file that lists
all the user inputs and prints the pressure and eigenrays. One of the binary files is an
eigenray file containing the range, source angle, target angle, travel time, phase,
amplitude and path history for the eigenrays for the specified source and target depth.
The other two files are pressure files. The first is the pressure file of coherent or random
propagation loss for the specified source and receiver geometry. The other is the contour
file of the pressure field as a function of depth and range.

The following is extracted from [2]:

The general program flow of the OAML CASSv3 model is illustrated in the following
figure.

 30

Figure 4.2-1. The General Program Flow of the OAML CASSv3 Model

The portion of CASS that is highlighted in the box (passive environment information,
COMPUTE EIGENRAYS, compute time series, compute random or coherent pressure)

COMPUTE
EIGENRAYS

Passive Environment Info
bathymetry

sound speed
volume attenuation

surface loss
bottom loss

COMPUTE
SIGNAL

COMPUTE
REVERBERATION

compute
 time series

compute passive
signal excess

Compute Active
Signal Excess

noise

Active Environmental Info
surface backscatter
bottom backscatter
volume backscatter

System Settings
beampatterns
source level

Active System Settings
pulse description

compute random or
coherent pressure

Surface spectra
Bottom spectra
Volume spectra

transmitter and
receiver speed and

heading

target speed
target strength
target heading

GRAB V2.0 PORTION OF CASS V3.0

 31

represents that portion of CASS that comprises the GRAB eigenray model. CASS
includes the system source level and beam pattern information to generate the signal
information from the GRAB eigenrays. CASS incorporates the system beampattern,
source level, pulse length information and environmental backscatter, and spectral
models with the eigenrays to compute reverberation. The portion of CASS that combines
the signal, reverberation, target, and noise to compute active signal excess is not
configuration managed.

The following is extracted from [3]:

Output of the GRAB model can include three binary files and an ASCII file. GRAB
echoes the user inputs on the screen and this information can be redirected to an output
file. Two of the binary files are eigenray files; EIGENRAY.DAT and EIGENRAY.EIG.
The EIGENRAY.DAT file is a header file for the EIGENRAY.EIG file that contains the
actual eigenray information. The other file is the pressure file of coherent or random
propagation loss for the specified source and receiver geometry. See the Software Design
Description3 for the specific file formatting.

The software design description reference in footnote 3 cited in the above quote refers to:
Keenan, R., H. Weinberg and F. Aidala, Jr., “Software Design Description: Gaussian Ray
Bundle Eigenray Propagation Model” OAML-SDD-74, Stennis Space Center, MS:
March 1999. We did not have access to that document. However, reference [1] appears to
be a later version of that document, and the excerpt quoted above is the only description
of binary file contents we could find there. That information is not detailed enough to
serve as the basis for a well-grounded API design.

3. Assessment of CASS system structure, documentation and feasibility of a CASS
API

The CASS system is implemented mostly in FORTRAN 77 and has a corresponding old-
style structure that is based on subroutines and is tightly coupled by data dependencies.
The system has a command language oriented toward punch card style batch processing.
There are no encapsulated subcomponents or subsystems in the modern sense, and there
is no data encapsulation. Common blocks and global variables are used heavily.

CASS has voluminous documentation (many thousands of pages) that is mostly oriented
towards implementers and is largely unintelligible by potential users. The main
documents appear to be a reference guide, a software requirements description, a
software design description, and a software test description. We were unable to find even
a specific reference to a user’s guide for CASS, let alone the desired document itself.

The CASS documentation contains a great deal of detail about the internal operation of
the algorithms and the mathematics on which they are based. There is very little
information about the meaning of the command language (format is specified in detail,
however), or about the data that must be supplied by a potential user, its structure and

 32

intended meaning, what the commands do, how they relate to each other, what system
concepts the users must know in order to understand how to use the commands and how
to make them work together, and how to interpret the meaning of the system outputs. It is
also lacking in good descriptions of the structure, intended meaning, and
interrelationships of the data in the system. The missing information is vital for the
design of a sound and reliable API. The existing commands are designed to be used by a
person, not by another program. There is a list of commands but not a coherent
explanation of what each command will do for a user.

To develop a good API for CASS, it will be necessary to first develop a document
containing the missing information identified above, and then to reengineer the system to
encapsulate the individual services and to make them accessible to external software
applications. That would be a major undertaking. Success would require a minimum of a
one person-year dedicated commitment from the developers of CASS, together with ten
to thirty person-years from skillful software engineers just to obtain accurate service-
level documentation, and a larger subsequent effort to do the re-engineering. The
dedicated commitment and substantial participation by the developers would be vital –
without that, even thirty person-years might not be enough to reconstruct and validate the
missing information about the data, its intended interpretation, the implicit constraints on
the data, and the relationships and constraints that relate the services, all of which are
needed both for the documentation and for the reengineering. The system is quite large,
so that reconstructing constraints and relationships implies a great deal of searching,
cross correlating, and analysis.

The main strength of CASS, especially the GRAB part, is the fact that the accuracy of the
results has been validated against real ocean measurements. However, there are currently
major barriers to its widespread use to support multiple applications such as training
simulations via a portable API. The main problem is the time and cost that would be
required to remedy the shortfalls identified above.

4. References

[1] Ruth Keenan, Henry Weinberg, Frank Aidala, SOFTWARE REQUIREMENTS
SPECIFICATION GRAB: Gaussian Ray Bundle Eigenray Propagation Model, July 30,
1997
[2] Ruth Keenan, Denise Brown, Emily McCarthy, Henry Weinberg, Laurie Gainey ,
Gary Brooke, Software Design Description for the Comprehensive Acoustic System
Simulation (CASS Version 3.0) with the Gaussian Ray Bundle Model (GRAB Version
2.0), NUWC-NPT Technical Document 11,231, 1 June 2000
[3] Ruth Eta Keenan, Henry Weinberg, Frank E. Aidala, Jr., SOFTWARE TEST
DESCRIPTION GRAB: Gaussian RAy Bundle (GRAB) Eigenray Propagation Model
Version 2.0 ,June 2000

 33

Appendix 2 - Analysis of EVA Model Signal Fluctuations due to Boundary
Interactions

The purpose of this section is to describe the basic physics of the phenomena associated
with the algorithms described in Appendices A & B of the EVA User’s Guide. These are
related to the frequency spreading and fine paths output of the point_to_point propagation
loss- see the type “path” in section 2.5.1. Each deals with time variability of the signal
along a single multipath. Although one uses the terminology “frequency spreading”
while the other uses the term “time-delay spreading” to characterize the effects, the two
phenomena are actually quite similar and have a common physical cause. Both are
generated by rough interface scattering, and both involve temporal and frequency
spreading.

Appendix A treats the spreading due to path interactions with a dynamically evolving
rough surface. A static rough surface can create facet reflections, which can generate
multiple arrival paths at nearly the same arrival angle but slightly different travel times.
These arrivals follow nearly identical paths, and thus interact with a common “patch” of
sea surface. Additionally, the surface is a dynamic interface, with a shape that evolves
and continually changes facets. This introduces a time variability in the signal which
includes Doppler shifts due to scattering from different facets moving at different speeds
and different directions.

Fortunately, the dynamic nature of the sea surface has been well studied, and there exist
empirical spectra that do a reasonable job of fitting measured data. Specifically, the
developers chose to use the Bretschneider spectrum, which requires four parameters to
characterize the mean spectrum: RMSDelayVariation, DelayVariationFrequency,
DelayVariationBandwidth, and ZeroToPeakRatio. The first parameter defines the rms
variation (in secs) around the mean time delay of the path. The second defines the
frequency (in Hz) of the spectral peak. The third gives the 3dB down width of the
spectral peak, and the fourth provides a normalizing factor that relates the power spectral
level at zero frequency to that at the peak. (Formally, the power spectral level at zero
frequency should be zero. But this non-zero value is used to avoid singularities.)

Although the developers assume such a spectrum will be utilized, the actual spectrum is
up to the discretion of the user, as they must generate code outside of EVA to compute
the actual travel time fluctuations. In that case, the user must utilize the same four output
parameters to characterize the fluctuations. In Appendix A, the developers provide a
description of an algorithm for approximating the Bretschneider spectrum and generating
random time delays.

Figure 1 displays the data flow model, indicating where the data comes from and how it
is to be utilized.

 34

Figure 1. Data flow for random travel time fluctuations as described in EVA
Manual Appendix A.

 35

Appendix B describes the temporal spreading associated with other, more generic, types
of boundary interactions. The three interactions described explicitly (which do not
necessarily account for all such interactions) can most easily be understood by examining
the sample paths displayed in Fig. 2.

Figure 2. Physical sketches of multipath phenomena associated with time-delay
spreading, as described in Appendix B of EVA manuscript.

In each of the scenarios described, an arrival along a particular direction (within the
resolution of the system) can actually be comprised of several multipaths, each having a
slightly different travel time. These separate arrivals are characterized as “fine paths”
associated with the standard path, which is to say that the code only generates the
standard path from specular reflections, and then uses a separate algorithm to compute
details of the fine path structure around the mean. As in the previous calculation, the
mean properties of the path are computed and output to the user, who must then
separately compute the influence of any fine path time delays.

 36

Because the phenomena described above do not fit any standard spectral shape (like the
surface scatter in Appendix A), the variability is not as well defined and requires more
processing by the user outside the code. For each mean path computed, EVAP also
reports four parameters associated with all the fine paths: NFinePaths,
SourceVirtualDepth, ReceiverVirtualDepth, and FineDelayCorrelationDistance.

If NFinePaths is zero, no fine path data is computed, and the only path considered is the
standard ray path. If NFinePaths is greater than zero (cannot exceed MaxFinePaths
defined by user in call to GetPropagationChannelData), then for each fine path a six-word
record is included in the model output. The parameters defined by this six-word record
are: Amplitude, FineDelay, Absorption, Patchwidth, PatchLength, and PatchOffset.

The first fine path value of FineDelay is always zero, indicating the first arrival of energy
on the path. Furthermore, the amplitudes are normalized such that the sum of their
squares is unity. This is computed for the lowest frequency specified in the EVAP call to
GetPropagationChannelData. Relative amplitudes for other frequencies can be estimated
using the Absorption term, which gives the frequency dependence of the loss on the fine
path (in dB/kHz).

If Patchwidth is zero, the time delay and amplitude of the fine path are taken directly
from Amplitude and FineDelay. If Patchwidth is not zero, however, both the time delay
and amplitude are randomized. The EVA manual describes a method for generating
random values for amplitude and time delay based on a physical model of scattering from
a finite size patch of interface. Specifically, the parameters PatchWidth, PatchLength,
PatchOffset, SourceVirtualDepth, and ReceiverVirtualDepth are combined with a random
number generator to produce variations in the time delay and amplitude of the fine path.

Finally, changes in source and/or receiver positions for each calculation are compared to
the FineDelayCorrelationDistance to determine if new fine path data is needed.

A decision flow diagram for the issues addressed in Appendix B is provided in Fig. 3
below.

 37

 38

Figure 3. Decision flow for fine path travel time fluctuations as described in EVA
Manual Appendix B.

 39

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52 2

Naval Postgraduate School

Monterey, CA 93953

3. Research Office, Code 09 1

Naval Postgraduate School

Monterey, CA 93953

4. Cathy Matthews 2
NAVAIR Code 4613
12350 Research Parkway
Orlando, FL 32826

5. Prof. V. Berzins, CS/Be 1

Naval Postgraduate School

Monterey, CA 93953

6. Prof. K. Smith, PH/Sk 1

Naval Postgraduate School

Monterey, CA 93953

